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Participants 

 

The following personnel were the main participants in this grant: 

 

Principal Investigator: Dr. Anthony Giles Warrack 

Co-PI: Dr. Alexandra Kurepa 

ONR Technical Director: Dr. Rabinder Madan 

NUWC-Newport Points of Contact: Dr. Roy L. Streit, Dr. Marcus L. Graham 

Graduate Students: Ms. Latoya Silochan, Ms. Kashonda Bynum, Mr. Rodolfo Bernal, 

Ms. Alisha Williams 

Undergraduate Students: Ms. Angela Edwards, Mr. Bryahn Ivery, Mr. Dustin Lupton, 

Mr. James Pender, Mr. Terrell Felder, Ms. Krystal Knight 

 

Under the terms of the original proposal, submitted in 2003, a cohort of two graduate 

students (Silochan and Bynum) and four undergraduate sophomore students (Edwards, 

Lupton, Ivery, and Pender) was selected. Due to the fact that some funding was delayed, 

and also that there were extra funds available as in-state rather than out-of-state students 

had been recruited, a  no-cost one year extension was applied for, and granted, enabling 

support for two more graduate students, Mr. Ricardo Bernal and Ms Alisha Williams, and 

two more undergraduate students, Ms Krystal Knight and Mr. Terrell Felder. Thus the 

grant has supported 6 undergraduate and 4 graduate students. 

 

The grant was undertaken with close cooperation at The Naval Undersea Warfare Center, 

Newport, RI (NUWC-Newport) where Dr. Warrack had held ONR/ASEE Summer 

Faculty Research Fellowships. On March 30, 2004 Dr. Rabinder Madan, the ONR 

Technical Director for the grant with Dr. Roy L. Streit of  NUWC, visited the A&T 

campus to confer with the PI’s and the students, prior to the two graduate students 

summer internship at NUWC. When Dr. Streit resigned from NUWC-Newport in 2005, 
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Dr. Marcus L. Graham became the point of contact. Dr. Errol G. Rowe at NUWC also 

cooperated.  

 

 

Activities and Findings 

 

1. Research Summary 

 

The research has concentrated in the area of parameter estimation in mixtures of normal 

probability distributions, in particular as it pertains to problems of multi-target tracking. 

We have been involved in the implementation of algorithms and estimation methods, 

such as the E-M Algorithm, the Kalman filter, and smoothing methods, both parametric 

and non-parametric. We have also investigated the relative merits of  various statistics in 

evaluating statistical models, such as the Akaike Information Criterion (AIC), and the 

Bayes Information Criterion (BIC), particularly in situations where the number of 

populations (targets) is one of the parameters to be estimated. Another area of interest has 

been in the field of obtaining good initial “guesses” of parameters, where we have 

compared various clustering techniques and algorithms.  

 

Another problem of interest has been that of maintaining “target identity”, when two 

target trajectories either cross or pass very close to each other. We attempted to combine 

smoothing methods with the EM Algorithm, and were interested in comparing standard 

methods, e.g. linear or polynomial regression, with methods that make fewer model 

assumptions, such as smoothing splines, Loess regression, and Kernel Regression. In the 

later case we were interested in comparing the combination of different kernel functions 

combined with different bandwidths. 
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2. Research Presentations 

 

At all stages the students have been encouraged to present their work on a formal basis. 

The following is a list of presentations that have been made by both the faculty and 

student participants in the grant: 

 

"Applying the Unscented Kalman Filter to Problems in Submarine Tracking" 

Dr. Giles Warrack and Dr Alexandra Kurepa, The Third National  Ronald E.  McNair 

Symposium  on Science and Technology : North Carolina  Agricultural and Technical 

State University, January 28, 2004 

 

"Simulating a Target Tracking Problem Using the Kalman Filter" ,Latoya Silochan, 

Math Awareness Mini-Conference, North Carolina  Agricultural and Technical State 

University 

April 22, 2004  

 

"Searching Algorithms using the Kendall-Wei Algorithm", Kashonda Bynum, Math 

Awareness Mini-Conference, North Carolina  Agricultural and Technical State 

University 

April 22, 2004 

 

“Applying Density Estimation and Nonparametric Smoothing Techniques to Tracking 

Problems” Latoya Silochan and Kashonda Bynum, presentation to NUWC-Newport 

Code 22 members, July 23, 2004 

 

“Multiple Target Tracking Using Functional Density Estimation”, Kashonda Bynum, 

Latoya Silochan, The Fourth National  Ronald E.  McNair Symposium  on Science and 

Technology : North Carolina  Agricultural and Technical State University, January 29, 

2005 
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“Using Parametric and Nonparametric Smoothing Techniques to Improve Estimation 

with the EM Algorithm”, Angela Edwards, Dustin Lupton, Bryahn Ivery, and James 

Pender. Presentation given at Chaffee Auditorium, NUWC-Newport, July 22, 2005 

 

“Submarine Target Tracking Simulations Using Mathematical Modelling”, Dustin 

Lupton and James Pender. Math Awareness Mini-Conference, North Carolina  

Agricultural and Technical State University, April 24, 2006 

 

“Using Tree Based Methods to Classify Messages”, Terrell A. Felder, Math Awareness 

Mini-Conference, North Carolina  Agricultural and Technical State University, April 19, 

2007 

 

“Applying Logistic regression to Message Classification”, Krystal A. Knight, Math 

Awareness Mini-Conference, North Carolina  Agricultural and Technical State 

University, April 19, 2006 

 

3). Library of R/S-Plus Programs 

 

During the course of the research a collection of computer programs for the E-M 

Algorithm, the Kalman Filter, and the Unscented Kalman Filter were written, many in 

collaboration with Dr. Errol G. Rowe of NUWC-Newport. These are included in 

Appendix A. 

 

Education and Results 

 

1). Initial Training 

 

All students in the initial cohort were given special instruction through a series of  

lectures and seminars, as well as being required to take courses in Probability, Linear 

Models, and Statistical Inference. The lectures and seminars covered more specialized 

topics than would generally be included in standard courses. The topics included 
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Bayesian Estimation, Filtering methods, Nonparametric Regression, Monte-Carlo 

simulation, Bootstrapping, Maximum Likelihood Estimation using the E-M Algorithm, 

and Kernel Density Estimation. The students were also taught to program in MATLAB 

and/or R/S-Plus.  

 

2). Graduate Student Research at NUWC-Newport 

 

In the summer of 2004 the two graduate students, Latoya Silochan and Kashonda Bynum,  

accompanied Dr. Warrack on a 10 week internship to NUWC-Newport, where they 

worked under the supervision of Dr. Warrack, and Dr. Roy L. Streit (Code 22).  The 

students worked on a project involving the application of  functional density estimation 

techniques to multiple target tracking. The work combined Bayesian updating estimation 

over time, with comparisons of different kernels (e.g. Gaussian, Epachnikov),  in density 

estimation, and different choices of  bandwidth (the “Bias-Variance” tradeoff). At the end 

of the 10 week period the students made a presentation to members of Code 22 at 

NUWC-Newport entitled “Applying Density Estimation and Nonparametric Smoothing 

Techniques to Tracking Problems”. The students attended seminars and lectures given at 

NUWC. They also sat in on ILIR sessions, in which NUWC researchers made 

presentations for the process of in-house research funding.  

 

 

 

3). Undergraduate Student Research at NUWC-Newport 

 

In the summer of 2005 the four undergraduate students, Angela Edwards, Dustin Lupton, 

Bryahn Ivery, and James Pender accompanied Dr. Warrack for a 10 week internship at 

NUWC-Newport. The NUWC point of contact was Dr. Marcus L. Graham (Dr. Streit 

having left NUWC). Again the students attended in-house NUWC lectures and 

presentations on non-classified material and ILIR sessions. They collaborated on a 

project using simulated data and  along with all the other student interns made a 

presentation in the Chaffee Auditorium at NUWC entitled “Using Parametric and 
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Nonparametric Smoothing Techniques to Improve Estimation with the EM Algorithm”. 

Using simulated data, the students attempted to track varying numbers of targets using 

the E-M (Expectation-Maximisation) Algorithm, both when the numbers of targets are 

known, and when they are unknown. One problem addressed was that of attempting to 

use various types of smoothing routines to maintain target identity when target 

trajectories either cross, or pass very close to each other. As well as trying standard 

methods, such as linear or polynomial regression, they also experimented with more 

“model free” methods such as cubic splines, Loess regression, and kernel regression  

(comparing different kernels and bandwidths). An attempt was made to tackle the much 

more difficult problem of tracking when the number of targets varies and is one of the 

parameters to be estimated. This problem was treated by a “penalized likelihood” 

approach which compensates for the fact that more complicated models will have higher 

likelihoods than smaller sub-models by penalizing models with larger numbers of 

parameters. Two standard statistics that do this are Akaike Information Criterion (AIC), 

and the Bayes Information Criterion (BIC).  In so far as it was possible to compare the 

two, empirical evidence based on simulated data seemed to indicate that the BIC was 

marginally superior, in others words it had a slightly higher probability of selecting the 

correct model. It also has the attractive feature that it can be shown to be the posterior 

probability for a model, given the data.  

 

4). Conclusions Regarding NUWC Internships 

 

All six students are on record as saying that they believe they benefited enormously from 

the summer internships. They were very impressed by the professionalism of the staff at 

NUWC, and felt they had been very well treated there. It certainly gave them exposure to 

a professional working environment. They also developed a certain intellectual initiative, 

and the ability to work on problems on their own for extended periods.  
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5). Further Graduate Student Research at NC A&T 

 

On returning to North Carolina A&T from NUWC, Latoya Silochan wrote a Master’s 

Degree project under the supervision of Dr. Warrack entitled “An E-M Based Algorithm 

for Maintaining Target Identity”, in which she combined parametric polynomial 

smoothing with the E-M Algorithm. This was presented in April 2005. Ms Bynum wrote 

an MS project under the supervision of Dr. Bolindrah Borah entitled “Solution Methods 

of Non-homogeneous Partial Differential Equations”. Rodolfo Bernal did a project under 

the supervision of Dr. Warrack, “Improving Estimation in the E-M Algorithm by PAVA 

Smoothing”. In this he considered the estimation of the parameters of a normal mixture 

distribution when the mixing probabilities, and the means of the mixtures are known to 

have the same orderings, e.g. μ1 ≤  μ2  ≤ … ≤ μk , and p1 ≤  p2  ≤ … ≤ pk . He attempted to 

incorporate the techniques of Isotonic Regression using the “Pool Adjacent Violators 

Algorithm” (PAVA) into the estimation process. While the estimation appeared to me 

marginally improved, the resulting algorithm was considerably slower. Ms. Alisha 

Williams is currently working with Dr. Kurepa on applications of Monte Carlo methods 

to Partial Differential Equations. 

 

 

Effect on Career and Professional Development 

 

Both Ms Silochan and Ms Bynum graduated with MS degrees in May 2005. Ms Silochan 

applied for a position at the Naval Surface Warfare Center (NSWCDD) , Dahlgren, VA 

She was offered, and accepted a position as a Mathematician/Statistician, which she 

accepted. However she was unable to obtain the required security clearance, and so 

accepted a position as a Mathematical Statistician with the US Postal Service, where she 

now works. Ms Bynum was also offered a position with NSWCDD but she too was  

unable to obtain security clearance. She is working as a lecturer and academic counselor 

at the Center for Academic Excellence at North Carolina A&T. Mr Rodolfo Bernal 

graduated with an MS degree in May 2006. He was offered a job as Systems Engineer at 

NSWC, but was then told this would have to be put on hold because of a hiring freeze. 
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He has also applied for a position with the US Census Bureau. He is currently working 

for Your Choice Health Services in Raleigh, NC. 

 

James Pender, Dustin Lupton, Bryahn Ivery, and Angela Edwards all graduated in 2006 

with BS (Mathematics) degrees. James Pender has been working at NSWCDD since 

January 2007 At the moment he is working with the Aegis Ballistic Missile Defense 

System (ABMD) in the Command and Decision (C&D) section. He has recently been 

selected from a competitive pool of candidates for a position doing baseline testing for 

the Japan Ballistic Missile Defense (JABMD) System. Dustin Lupton is employed by 

Progress Energy as an Auxillary Operator at the Brunswick Nuclear Plant, in Southport 

NC. He is studying to qualify as an NRC licensed nuclear reactor operator. Bryahn Ivery, 

after teaching for a year has also applied to NSWCDD, also the NSA and the Census 

Bureau. Angela Edwards has had health problems which has made permanent 

employment difficult. 

 

There is no doubt that the grant significantly impacted the career choices of most of the 

students involved, as well as giving them exposure to areas of applied mathematics, 

probability and statistics they would not otherwise have encountered.  

 

Demographic Data 
 

Of the four original undergraduates, all of whom graduated with GPA’s between 3.00 and 

3.75, three were African American, and one White. Three were male, and one female. Of 

the three graduate students who graduated, two were African American, and one 

Hispanic. Of the students currently enrolled, the graduate student is female and African 

American, the two undergraduates are both African American, one male, the other 

female. All three are performing excellently in their classes. 
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APPENDIX A 
#Kalman Filter R/S-Plus program for 2-Dimensional Tracking 
#Instructions:  To load the file into R's workspace, type  
#               source("/home/... path to your code ... /kalman.R") 
#  
#               To run the program, type  
# 
#               (a) library(MASS) #Just once per R session. 
#                                 #contains ginv(generalized matrix inverse) 
# 
#               (b) kalmanR(N)    #N is number of observations. 
#                
# 
#library(MASS)  #contains ginv - generalized matrix inverse: 
kalmanR <- function(N) { 
  # N - the number of observations. 
  # 
  m <- numeric;   m <- 2; 
  n <- numeric;   n <- 4; 
  dt <- numeric;  dt <- 1; 
 
  accel <- 0.5; 
  obsStd <- .75; 
 
  xHat <- numeric(n);       
  xHat <- c(0.0, 0.0, 0.0, 0.0); #(x_pos, x_velocity, y_pos, y_velocity) 
   
  Path <- matrix(0,2,N) 
  path_Hat <- matrix(0,2,N) 
 
  Soln <- numeric(n);   
  Soln <- xHat; 
 
  Phi <- diag(n);  #Identity 4-by-4 matrix: 
  Phi[1,2] <- dt;  #x-component update 
  Phi[3,4] <- dt;  #y-component update 
 
  P <- rnorm(n*n); 
  dim(P) <- c(n,n); 
 
  Q <- diag(n); 
  Q[1,1] <- dt^4 / 4;  Q[1,2] <- dt^3 / 2; Q[2,1] <- dt^3 / 2; Q[2,2] <- dt^2; 
  Q[3,3] <- dt^4 / 4;  Q[3,4] <- dt^3 / 2; Q[4,3] <- dt^3 / 2; Q[4,4] <- dt^2;  
  Q <- accel^2 * Q; 
  P <- Q; 
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  M <- matrix(0,m,n); 
  M[1,1] <- 1.0; 
  M[2,3] <- 1.0; 
 
  R <- obsStd * obsStd * diag(m); 
 
  Phi_P <- matrix(0,n,n); 
  Phi_P_Mprime <- matrix(0,n,m); 
  B_Mprime_plusR <- matrix(0,m,m); 
  MP <- matrix(0,m,n);  
 
  for (i in 1:N) { 
    eps1 <- rnorm(1); 
    eps2 <- rnorm(1); 
    processNoise = accel * c(eps1*dt^2 / 2, eps1*dt, eps2*dt^2 / 2, eps2*dt); 
    Soln <- Phi %*% Soln + processNoise; 
 
    w <- obsStd * rnorm(m); 
    z <- M %*% Soln + w;   #This is our observation: 
    Innovation <- z - M %*% xHat; #Difference between approximation & observation: 
 
    B_Mprime_plusR <- M %*% P %*% t(M) + R; 
    w <- solve(B_Mprime_plusR,Innovation); 
    xHat <- Phi %*% xHat + Phi %*% P %*% t(M) %*% w;  
  
    Path[1,i] <- Soln[1];   Path[2,i] <- Soln[3] 
    path_Hat[1,i] <- xHat[1];   path_Hat[2,i] <- xHat[3] 
 
    P <- Phi %*% P %*% t(Phi) - Phi %*% P %*% t(M) %*%  
         ginv(B_Mprime_plusR) %*% M %*% P %*% t(Phi) + Q     
  } 
  results <- data.frame(Path[1,],Path[2,],path_Hat[1,],path_Hat[2,]) 
  plot(results[,1],results[,2],col='blue',type='l',xlab="Truth = blue, approx = red",ylab=" ") 
  points(results[,3],results[,4],col='red',type='l') 
  results 
} 
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R/S/Plus Program For Estimation of Parameters in k Gaussian Mixtures 
##**********************************************************************
***## 
## Program "EMkMixEstimation.R" . This programe contains 3 subroutines:     ## 
## 1). KmixGenerate generates a mixture of k normals, sample size n        ## 
## 2). StartMixK uses sample quantiles to generate startinf means, sds     ## 
## 3). emK computes EM estimates of mu's sd's probs for any k              ## 
##********************************************************************** 
##**********************************************************************
***## 
##   Subroutine to Generate a sample of size n of a mixture of k normals   ## 
##*********************************** 
KmixGenerate <- function(n,means,sds,probs)   { 
 k      <- length(means) 
 nk     <- rmultinom(1,n,probs) ##USE MULTINOMIAL TO GENERATE 
MIXTURES 
 x      <- numeric(0) 
 for (i in 1:k)  { 
  x    <-  c(x,rnorm(nk[i],means[i],sds[i])) 
  print(nk[i]) 
 } 
 return(x) 
} 
 
##*********************************## 
##  Now Generate Starting Values   ## 
##*********************************## 
 
StartMixK    <- function(x,k)     { 
 y      <- sort(x) 
 means1 <- numeric(k) 
 sds1   <- numeric(k)  
 
## Uniform prior probs assumed, but any could be used  ## 
 
 probs1 <- rep(1,k)/k  
 breaks <- c(0,cumsum(probs1)) 
 
## Computes required number of quantiles ## 
 
 quants <- quantile(x,breaks)  
 
## This loop computes the starting means and std devs ## 
 
 for (i in 1:k)  { 
  a         <- quants[i]  
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  b         <- quants[i+1] 
  means1[i] <- mean(y[y >=  a & y <= b]) 
  sds1[i]   <- sd(y[y >=  a & y <=  b]) 
 } 
 return(list(means1,sds1,probs1)) 
 } 
 
 
##**********************************************************************
***## 
##                  Routine to do EM estimation                            ## 
##          Compute Estimates using EM with function emK                   ## 
##**********************************************************************
***## 
 
 
emK<-function(x,means,sds,probs) { 
   n      <- length(x)  
   k      <- length(means) 
   MAXiter<-500 #Maximum number of iterations 
  numITS <- 0; ERR <- 1 
 
## Create n by k matrix for posterior probabilities ## 
 
       TX     <-matrix(0,n,k) 
  
  while ((ERR > .00005) & (numITS < MAXiter)) { 
   numITS   <- numITS + 1                   
   oldmeans <- means 
 
##**********************************************************************
***## 
## Compute column numerators for TX, n by k posterior probabilities matrix ## 
##**********************************************************************
***## 
  
   for (i in 1:k) { 
    TX[,i]  <- probs[i]*dnorm(x,means[i],sds[i]) 
   } 
 
   TXrowsum      <- apply(TX,1,sum)  
 
## Now divide by row sums ## 
  
   TX            <-TX/TXrowsum 
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##Update probabilities, means, sds## 
 
   for (i in 1:k)  { 
    probs[i] <-mean(TX[,i]) 
    means[i] <-sum(TX[,i]*x)/(n*probs[i]) 
    sds[i]   <-sqrt(sum(TX[,i]*(x-means[i])^2)/(n*probs[i])) 
   } 
 
   ERR      <- sum((oldmeans-means)^2) 
  } 
 
  print("Number of Iterations, Convergence Error");print(c(numITS,ERR)) 
  return(list(means,sds,probs))  ## Evidently R not happy about returning 
values this way ## 
} 
 
 
##**********************************************************************
***## 
##                        End of function  emK                             ## 
##********************************************************************** 
##**********************************************************************
***## 
##                           MAIN PROGRAM                                  ## 
##**********************************************************************
***## 
 
 n <- 200   
 means<-c(5,10,12,15)   
 sds<-c(2,4,4,2)   
 probs<-c(.3,.2,.3,.2)   
 k <- length(means) 
 x <- KmixGenerate(n,means,sds,probs) 
 #print(x) 
 startvals <- StartMixK(x,k) 
 EMestimates <- emK(x,startvals[[1]],startvals[[2]],startvals[[3]]) 
 print("TRUE MEANS, SDS, & PROBS WITH EM ESTIMATES") 
 print(means)   
 print(estmeans<-EMestimates[[1]]) 
 print(sds)   
 print(estsds<-EMestimates[[2]]) 
 print(probs)   
 print(estprobs<-EMestimates[[3]]) 
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R/S/Plus Program to Track with  Unscented Kalman Filter 
# 
# 
# 
ukf <- function(N,x0=10,alpha=0.5,beta=25,gamma=8,sd1=1.732051,std2=1.0) { 
 # 
 #N The number of time samples. 
 # 
 # 
 #To Load into Memory:  source("/home/...path-to-program.../ukf.R")   
 # 
 #To Run:   ukf(100) 
 
  #Generate state and observation values: MM[,1] and MM[,3], respectively. 
  #State and observation noise also generated: MM[,2] and  MM[,4], respectively. 
  MM  <- processesTruth(alpha, beta, gamma, sd1, sd2, x0, N) 
 
 
  lx <- 1  #Length of process x 
  lv <- 1  #Length of noise v 
 
  ly <- 1  #Length of observation process 
  ln <- 1  #Length of observation noise n 
 
  X_x   <- matrix(0,lx,2*lx+1) 
  X_v   <- matrix(0,lv,2*lx+1) 
  X_n   <- matrix(0,ln,2*lx+1) 
 
  x <- MM[1,1] 
  y <- MM[1,3] 
  v <- MM[1,2] 
  n <- MM[1,4] 
 
  myPts <- x 
  
  P_k <- (sd1*sd1)*diag(lx)  
 
  W <- numeric(2*lx + 1) 
 
  X <- matrix(0,lx,2*lx+1) 
  Y <- matrix(0,ly,2*lx+1) 
  K <- matrix(0,lx,ly) 
 
 
  W[1] <- .5 
  for (i in 2:(2*lx + 1)) { #Weights 
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    W[i] <- (1 - W[1])/(2*lx) 
  } 
 
 
  for (kk in 1:N) { 
     # 
     #    
  
     X[,1] <- x 
     j <- 0 
     for (i in 2:(2*lx+1)) { 
        j <- j + 1 
      X[,i] <- x + (-1)**(j+1) * sqrt(1/(2*W[i])*P_k) 
     } 
      
      
     for (i in 1:(2*lx + 1)) { 
     X_x[1:lx,i] <- X[1:lx,i] 
     } 
 
     X_x  <- systemProcess_noNoise(X_x,lx,kk,alpha,beta,gamma) 
 
     x_mean <- matrix(0,lx,1) 
     dim(x_mean) <- c(length(x_mean),1) 
     for (i in 1:(2*lx + 1)) { 
     x_mean <- x_mean + W[i]*X_x[1:lx,i] 
     } 
      
      
     P_kMean <- sd1*sd1 * diag(lx) 
     for (i in 1:(2*lx + 1)) { 
     P_kMean <- P_kMean + W[i] * (X_x[1:lx,i] - x_mean) %*% t(X_x[1:lx,i] - 
x_mean) 
     } 
 
 
     Y  <- observationProcess_noNoise(Y,X_x,lx,ly,alpha,beta,gamma) 
 
 
     y_mean <- matrix(0,ly,1) 
     dim(y_mean) <- c(length(y_mean),1) 
     for (i in 1:(2*lx + 1)) { 
     y_mean <- y_mean + W[i]*Y[1:ly,i] 
     } 
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     P_yy <- sd2*sd2 * diag(ly) 
     for (i in 1:(2*lx + 1)) { 
     P_yy <- P_yy + W[i] * (Y[1:ly,i] - y_mean) %*% t(Y[1:ly,i] - y_mean) 
     } 
      
 
     P_xy <- matrix(0,lx,ly) 
     for (i in 1:(2*lx + 1)) { 
     P_xy <- P_xy + W[i] * (X_x[1:lx,i] - x_mean) %*% t(Y[1:ly,i] - y_mean) 
     } 
 
      
     K <- P_xy[1,1] / P_yy[1,1]   #P_xy %*% ginv(P_yy) 
     x <- x_mean + K %*% (MM[kk,3] - y_mean) 
     P_k <- P_kMean - K %*% P_yy %*% t(K) 
 
     myPts <- c(myPts,x) 
  } 
 
  errMat <- numeric(N) 
  MSE <- 0 
  for (k in 1:N) { 
    errMat[k] <-  abs(MM[k,1] - myPts[k]) 
    MSE <- MSE + errMat[k]*errMat[k] 
  } 
  MSE <- MSE/N 
  print(MSE) 
  timeStamps <- 1:length(myPts) 
  plot(timeStamps, myPts,ylab="Average Particle Pos.", type='l') 
} 
 
 
 
processesTruth <- function(alpha, beta, gamma, sd1, sd2, x0, N) { 
     # 
     #   
     # 
     #  M[,1] ... the state values: 
     #  M[,2] ... the state noise: 
     # 
     #  M[,3] ... observation values: 
     #  M[,4] ... observation noise: 
     # 
     # 
     M <- matrix(0,N,4) 
     M[,2] <- rnorm(N,0,sd1)   #Process Noise 
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     M[,4] <- rnorm(N,0,sd2)   #Observation Noise 
     # 
     M[1,1] <- x0 
     for (n in 2:N) { 
  M[n,1] <- alpha * M[n-1,1] + 
                   beta * M[n-1,1]/(1 + M[n-1,1]*M[n-1,1]) + 
                   gamma * cos(1.2*n) + M[n,2] #Process  
  M[n,3] <- M[n,1]*M[n,1]/20.0 + M[n,4] #Observation 
     } 
     timeStamps <- 1:N 
     #split.screen(c(2,1)) 
     layout(matrix(c(1,2,3), 3, 1)) 
     #screen(1) 
     #erase.screen() 
     plot(timeStamps, M[,1],ylab="True Particle Position",type='l') 
     return(M) 
} 
 
 
systemProcess_noNoise <- function(X_x,lx,kk,alpha,beta,gamma) { 
     # 
     # 
     for (n in 1:(2*lx + 1)) {   #Process 
     X_x[1:lx,n] <- alpha * X_x[1:lx,n] + 
                     beta * X_x[1:lx,n]/(1 + X_x[1:lx,n]*X_x[1:lx,n]) + 
                     gamma * cos(1.2*kk)                     
     } 
     return(X_x) 
} 
 
 
observationProcess_noNoise <- function(Y,X_x,lx,ly,alpha,beta,gamma) { 
     # 
     # 
     for (n in 1:(2*lx + 1)) {  #Observation 
     Y[1:ly,n] <- X_x[1:lx,n]*X_x[1:lx,n]/20.0 
     } 
     return(Y) 
} 
 
# 
# 
#    END OF CODE 
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APPENDIX B 
Graduate Students Presentation at NUWC 

 
In the summer of 2004 the two graduate students, Ms Latoya Silochan and Ms Kashonda 
Bynum accompanied Dr. Warrack for a 10 week internship at NUWC-Newport, where 
they worked under Dr Roy L. Streit. At the end of the internship the students made a 
presentation to selected member of Code 22 at NUWC entitled “Applying Density 
Estimation Techniques to Tracking Problems”. Frequency Azimuth (“FRAZ”) data was 
simulated, and various different kernel density estimators were used. The effect of 
different bandwidths was also considered. 
 

 



 21

 
 



 22

 



 23

 



 24

 



 25

 



 26

 
 
 



 27

 



 28

 



 29

 



 30

 



 31

 



 32

 



 33

 



 34

 



 35

 



 36

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37

APPENDIX C 
Undergraduate Student Presentation NUWC, 2005 

 

Using Parametric and Nonparametric Smoothing Techniques to Improve 
Estimation with the EM Algorithm 

 
 
 

Angela EDWARDS 
 

Bryahn IVERY 
 

Dustin LUPTON 
 

James PENDER 
 

Department of Mathematics 
North Carolina A&T State University 

 
Mentored by 

 
Dr. A.G. Warrack 

Department of Mathematics 
North Carolina A&T State University 

warrack@ncat.edu 
 

Dr. Marcus Graham 
Naval Undersea Warfare Center, 

Newport, RI 
 

GrahamML@npt.nuwc.navy.mil 
 
 
 

This work was supported by grant number N00014-03-1-0465 from the Office of Naval 
Research. 

 
July 22, 2005 

 
 
 
 
 
 
 



 38

 
Introduction 

 
In this paper we consider the problem of tracking two targets, and maintaining the 
separate track when either 

• The two tracks cross, 
• The two tracks approach each other, then after passing very close, diverge. 

The data used was simulated using the R statistical programming language. R is the open 
source version of the S-Plus programming language developed at Bell Labs by John 
Chambers. 
 

Type of Data 
 
At each time point, t, t=1,2,…,T,  we observe data in the form of a sample of n 
observations nxxx ,...,, 21 . These data are generated according to a “mixture” of k normal 
distributions, each with mean and standard deviation ),( jj σμ , j=1,2,…,k . Each 
observation, ix , is sampled with probability jp from distribution j, where 

1...21 =+++ kppp . It can be shown that the probability distribution for each ix  is 

f (x) = p jφ(xi;μ j ,σ j )
j=1

k

∑  

Where ),;( jjix σμφ is the normal density with mean and standard deviation ),( jj σμ . 
The means at time t represent the respective positions of k targets. In fact we should write 
μ j (t) , representing the true position of target number j at time t. In this presentation we 
will assume the number of targets, k, is known.  
 
 

Estimation of Target Parameters 
 
The parameters to be estimated at each time point t, are the means (positions), standard 
deviations and probabilities. Clearly the positions at time t should be incorporated into 
the estimation at time t+1, since we assume that all targets move in some reasonably 
smooth trajectory. 
A standard statistical tool in estimating the parameters in a mixture distribution is the  
Expectation-Maximization Algorithm (generally known as the EM Algorithm), which 
seeks parameter estimates that maximize the likelihood function 

∏∑
= =

=
n

i

k

j
jjij xpxpL

1 1
),;();,,( σμφσμ  

This is an iterative algorithm, which requires starting values, and then updates the 
parameter estimates at each iteration. Under fairly wide conditions this algorithm can be 
guaranteed to converge. It is notably useful in estimation for situations in which there is 
missing or censored data, as well as for mixture distributions. 
In tracking situations it is sensible to incorporate the estimate at time t, or some function 
of them, to use as the initial estimates at time t+1.  
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In this study we consider various smoothing methods, both parametric and 
nonparametric, which we incorporate into the EM algorithm to improve target estimates, 
and to maintain target identity. 

 
Smoothing 

 
The concept of smoothing refers to the accurate fitting of a smooth curve to a set 

of  “noisy” data (e.g. data full of error).  A smooth estimate is an extremely accurate 
estimate of the original data point because smooth estimates greatly reduce noise, and 
help to prominently reveal the characteristics of the actual trajectory being tracked.  In 
the research conducted this summer (May-July 2005), several smoothing techniques were 
used to smooth parametric as well as nonparametric regression estimates.  
 

Parametric Regression 
 
  The parametric case is one in which the expected form of the function is 
known.  In this instance, it is most accurate to perform a linear/multiple regression to 
estimate a specific, finite number of unknown parameters.  The use of a weighted sum of 
the observations to retrieve our fitted values is pertinent to this case. 

 

  Simple Linear Regression Model 
 

The first case explored was that of the linear regression model.  The linear 
regression model is given by:   

iii xy εβα ++=  
 
Where α is the y-axis intercept, β  is the slope (otherwise known as the regression 

coefficient), and the iε ’s are the corresponding error terms for each ix .  These error 
terms are considered to be independent and normally distributed with mean zero and 
standard deviation, 2σ .  The method of least squares is used to estimate the 
parameters 2,, σβα .  For the trajectories that were studied, there was no need to use a 
linear regression fit.  Though one of our trajectories has linear properties, it is more 
efficient and flexible to use a quadratic multiple regression analysis.  This approach gives 
more flexibility because the quadratic regression model can track quadratic functions and 
linear functions, whereas the simple linear regression is used strictly for those functions 
that only display linear characteristics.  
 However, if we apply the linear regression model to the specific trajectories used, 
we can see specifically where this technique fails.  



 40

 
 

0 10 20 30 40 50

0 

5 

10 

15 

20 

25 

t

y 

 
 
In figure 1, the track is plotted as a function of time.  The solid line denotes the user 
defined trajectory, and the hollow dots represent the estimated data points that were 
calculated and smoothed using simple linear regression.  It is obvious that the program 
confuses the two tracks when they intersect the second time.  Since the linear regression 
model is used for those trajectories that display only linear characteristics, the smoothing 
procedure will always estimate a data point that has a linear relationship with the 
previous estimate.  For this reason, when the tracks cross the second time, the linear 
regression smoother wants to continue in a positive direction for the green track and a 
negative direction for the red track, thus causing the tracks to switch.  This is not the case 
when a quadratic multiple regression smoother is used.   
 

Nonparametric Regression 
 

The nonparametric case is one in which the expected form of the function is 
unknown. In this instance, one must use an alternate way of determining the weights to 
be used in the regression.  There are several different techniques that may be used.  This 
summer three of these techniques were used (all of which have predetermined functions 
in R). 
 

Kernel Regression 
 
 The Kernel regression smoother, most commonly known as the Nadaraya-Watson 
Kernel Regression Estimate, is used to determine the appropriate weights to use to yield 

Fig. 1: Linear regression  

---- actual tracks 
 
°°° estimated track 
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fitted values of a data set.  The kernel, K, used this summer was that of the normal 
density: 

K = 
2

2
1

2
1 x

e
−

π
 

 
Using this kernel, R will evaluate the appropriate weights for each of n data points, 
assigning more weight to the estimates close to actual values and less weight to the 
estimates farther away from actual values.  In R, the ksmooth function represents the 
kernel regression. 

To accurately perform this regression one must also specify a bandwidth.  The 
bandwidth is used to determine how fast the weights will decrease as the distance from 
the actual value increases.  The choice of bandwidth is extremely important, as this value 
will determine how smooth the fitted values will be.   

For example, choosing a bandwidth value that is too large (close to the actual 
sample size) will result in an over-smoothed fit.  This is because when the bandwidth is 
large the weights are determined at a large number of points, thus they are virtually equal.   
The result is a set of smooth points that have a seemingly linear relationship as opposed 
to a relationship that closely resembles the actual trajectory.  This is shown in Figure 2 
where the bandwidth is set at 30.  

 
 
On the other hand, it is also possible to choose a bandwidth that is too small.  

When this occurs, the predicted point receives the most weight.  In this case, each sample 
will yield a different fit because there is too much dependence on the individual data sets. 

----  actual trajectory 1 
----  actual trajectory 2 
°°°  predicted values 
----  oversmoothed fit

Figure 2: Large Bandwidth 
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This results in unsmooth estimates with extremely high variances, as in Figure 3 where 
the bandwidth is set at 0.5. 

 
 
 
 
However, using the “guess and check” process, one can eventually come up with 

an appropriate bandwidth value.  For our purposes, it was most accurate to use a 
bandwidth of 3 for the first trajectory and a bandwidth of 2 for the second trajectory.  
Using these values produced the most accurate fit, as seen in figure 4.  

---- actual trajectory 1 
---- actual trajectory 2 
°°° predicted estimates 
--- undersmoothed fit 

Figure 3: Small bandwidth
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Though there is some error, it is obvious that with the appropriate bandwidth the kernel 
regression procedure can be an accurate smoothing algorithm.  
 

II. Smoothing Splines 
 
 The smooth spline procedure is another function integrated by R to smooth data.  
This uses a combination of the ordinary least squares estimate and the loess smoothing 
procedure (loess procedure explained in more detail later).  These smoothing splines 
adjust the level of smoothness by varying the curve from a least squares linear 
approximation to a cubic approximation, and using whichever approximation fits the 
original data set most appropriately. 
 A spline is a function that consists of several polynomial pieces joined together 
with certain smoothness conditions.  A spline is calculated at several subintervals of an 
interval, I.  The subintervals are determined by a certain number of knots, which we 
determine.  The knots are the points of the original function at which the function 
changes its character (e.g. the function changes slope or changes direction). 
 For our purposes, we chose the number of knots for the first trajectory to be ten 
and we chose the number of knots for the second trajectory to be null.  We chose ten for 
the first trajectory because there are several points at which the trajectory changes 
character.  Specifying ten knots seemed to work the best, separating the trajectory into ten 
subintervals and calculating a spline at each interval.  Because the second trajectory is 
simply a quadratic function, it worked best to specify the number of knots to be null.  
This is because the smooth spline function can make an accurate determination of how 

---- actual trajectory 1 
---- actual trajectory 2 
°°° predicted estimates  
--- smoothed fit

Figure 4: Accurate Bandwidth 
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many knots are needed if the function is “simple” (simple meaning strictly linear, strictly 
quadratic, strictly cubic etc.).  

 
Figure 5 shows our interpolation of the smooth spline procedure.  From figure 5 

we see that the smooth spline procedure is extremely accurate, with the blue line 
representing our smooth spline estimate.  Compared to the other procedures we used, the 
smooth spline estimate proved to be the most accurate procedure at tracking the original 
trajectory. 

Loess regression 
 
“Loess” stands for “locally weighted scatter plot smoother”. The procedure is 
complicated, but may be roughly outlined as follows: given data (xi, yi),i =1,2,...,n , we 
wish to estimate y for some given value of x. This estimate of y is obtained by fitting the 
weighted quadratic regression model: 
yi = β0 + β1(xi − x) + β2(xi − x)2 + εi 
Using the “tricube” function to determine weights 

wi = 1−
x − xi

h

3⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3

 

where h is known as the “span”. The choice of a large value of h will general produce a 
very smooth curve, and that of a small value a more jagged one.  
 
In this tracking program we used loess regression.  

Figure 5: Smooth Spline 

---- actual trajectory 1 
---- actual trajectory 2 
°°° predicted estimates  
---- smooth spline 
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In the figure the loess regression doesn’t read the estimates in the beginning as we would 
like, but follows well at the end.  The red and green lines are the true trajectories that we 
are trying to find. The dots are the estimates from the EM algorithm, and the black and 
blue lines the smoothed estimate using the nonparametric loess regression. 

 
 
 

 
 
 
 
                                                      
 
 
 
 

___  spline 
tracker 
____ spline 
tracker


